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NASA TT F-13,612

_ INVESTIGATION OF ORDINARY WAVES IN A CHEW,
GOLDBERGER, AND LOW APPROXIMATION

V. B. Baranov

ABSTRACT: The Chew, Goldberger, and Low hydrodynamic equations
for collisionless plasma are used to investigate ordinary waves
{(or Riemann waves). The integral curve field for fast and slow
magneto-gonic waves is investigated in detail. It is shown

that in a fast magneto-sonic wave the magnetic field increases
with increase in density, just as is the case in magnetohydro-~
dynamics with isotropic pressure. The slow magneto-sonic wave
has a region in which the magnetic field drops to the compression
wave, as well as an anomalous region in which the sign of the
derivative changes.

It is shown that fast and slow magneto-sonic wavesg have a
tendency to flip in certain special cases (low pressures and
propagation of the wave almost perpendicular to the magnetic
field.

Many problems of space and laboratory physics reduce to the need to investi-
gate those characteristic plasma motions for which the length of the change in
thé parameters is small as compared with the.length of the free path of the
charged particles, but large as compared with their Larmor radius. Chew,

" Goldberger, and Low [1] have shown that in this case the behaV1or of the plasma
can be described by a system of magnetohydrodynamic equations with anisotropic

pressures.

Reference [2] used these equations to make a detailed analysis of the
propagation of 1ow~amp1i{ude waves in a collisionless plasma, and reference
[3] investigated ordinary waves in plasma; an example of nonlinear waves,
assuming that the 1ongltud1na1 and transverse pressures (p and pi) were small
compared with B /Qﬂ, where B is the magnetic field 1nductlon vector. This
paper is devoted to the investigation of ordinary waves in plasma within the
Chew, Goldberger, and Low approximation, and without limitations as to the_
hydrodynamic parameters. The shapes of the integral curves for slow and fast
magneto-sonic waves are obtained. It is proven that these waves have a

tendency to flip in certain limit cases. The analysis for fast waves coincides,

* Numbers in the margin indicate pagination in the foreign text.



and for slow waves does not, with the results in reference [3] in the limit

case for low pressures.

1. Eguations for Ordinary Waves [k

The set of magnetohyﬁrodynamic equations in the Chew, Goldberger, and Low

approximation is in the form (see [ 4], for example)
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'Here, P is the density,

3 is the mean velocity,

P, and P, are the 1ongitudina1 and transverse plasma pressures,
3 is the stress tensor,
B is the magnetic field induction vector,

= B/B is the unit vector along the magnetic field.

We will consider those plasma motions for which all the parameters depend
solely on one coordinate, X, and on time, t, " Eg. (1.1) now can be rewritten

in the form
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We will seek those solutions of this set for which all magnitudes depend solely

on the combination ©(x, t) of independent variablesx and t (ordinary waves, or
Riemann waves).

Moreover, what follows from the last two equations of Eq.

(1.2) is that Bx = constant; Introducing the velocity of wave phase motion



relative to the gas through .the formula
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where °

A is the phase velocity of an ordinary wave, we obtain from Eq; (1.2) a

homogeneous linear set of equations for the derivatives of the unknown functions
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Here the prime designates differentiation in terms of the function ¢(x, t).
The determinant of this set should equal zmero in order for there to be non-
trivial solutions. Calculation of the determinant for Eq. (1.4) reduces to a

characteristic equation, which has the form

D(e)= Q"“[ F[Q"'}-‘-f’/f—f//bfj [—Ct’a - (1:5)
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Naturally enough, the characteristic Eq. (1.5) of ordinary waves coincides L7
with the characteristic equation of small amplitude waves in reference [2].
The results obtained in [2] are then used to investigate ordinary waves. The
solution of characteristic Eq: (1.5) results in the following valueg of a for

which the set of equations of Eq. {(1.%4) has nontrivial solutions

where ,
A f (4,7/ /O )Z (1.7)
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The zero root, as well as the roots of a, and a+, _s define the solutions,

which are an analogue of an entropy wave, of an Alfén wave, as well as of fast

and slow magneto-~sonic waves in magnetohydrodynamics with isotropic pressure

[5]. The analogue of Alfén waves was investigated in [3], and the analogue of
entropy waves can be investigated readily by usihg the set of equations of

Eq. (1.4). 1In what follows, only fast and slow magneto-sonic waves will be
investigated in detail because there is a physical meaning te entropy waves /8
only after the introduction of dissipative mechanisms in the set of Chewy

Goldberger, and Low equations, and the introduction of the concept of entropy

in a collisionless plasma with anisotropic pressure.

Reference [2] obtained the inequalities
<.
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where

Moreover, [2] showed that the root of the slow magneto-~sonic wave is real
only when the inequality is satisfied (what follows from the above-~described

inequalities is that the a, root is always real)
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and that the regions of change in the longitudinal pressure, in which the root

of the characteristic Eq. (1.5) is real, can be broken down 1nto three parts
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It should be noted that when P, > Py @ so~-called "hose" instability

develops in the plasma (the Alfén wave in this case has a purely imaginary

root).

2. Investigation of Fast and Slow Magneto—~sonic Waves

Let us put

in the set of equations of Eq. (1.4). Now, if we select our system of coordi-
nates such that at some arbitrary point the condition w = Bz = 0y 1s satisfied,

it can be said that what follows from Eq. (1.4) is

And, just as in [5], it can be putreverywhere that w = BZ = 0. Moreover,
taking the plasma density p for the function ©®(x, t), and solving the set of
equations in terms of the derivatives, we obtain from Eg. (1.L) the following
set of equations describing the change of parameters in fast and slow magneto-
sonic waves (at the same time, it is easy to show that the fifth equation in

Eq. (1.4) is linearly dependent, and it can be discarded). /10
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As will be seen from Eq. (2.1), in ordinary waves
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The superscript (*) signifies that the functions are taken when By = 0, and

Cl*,

It is obvious that p, - O.when Puﬁ 0, and P, - O in this case if By is limited.

C,* are constants. The function g(p) is in the form shown in Figure 1.

But when By >> B_ (b » 0) we have, for a fast wave,
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and for a fast wave when By S Bx
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Now let us move on to the construction of the integral curve field.

(a) Fast magneto-sonic wave le

It will be seen from Eg. (2.3) for A , and from Eq. (2.2) for C that the
sign A+ everywhere coincides with'the sign of C. Spgcifi.callyg it is easy to
show that in the ranges defimed by the inequalities of Egs. {1.11) and (1.12)
we have A} > 0 and C > 0, for any values of the parameter b = Bi /B2 < 1, and
in the range defined by the inequalities of Eq. (1.13) the value of C can

change signs (at the same time we have A+.= O at the point where C = 6).

Thus, it can be concluded that just as in the case of magnetohydrodynamics
with isotropic pressure [5], the magnetic field in the compression wave in-

creases, and decreases in the rarefaction wave.

2
When B_"- O when p are small, and as will be seen from Figure 1, we have

g(p) < Bi/éﬂ,'and from Egs. (2.5) and (2.6) we obtain
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when p = 0%, from Egs. (2.5) and (2.6) we have.A4 = 0, where p* can be

established through the equation

Figure 1.



It is also easy to shéw that the derivative dByz/dp when By2 -+ 0 is a /13
decreasing function of p. Considering everything reviewed in the foregoing, as
well as Eq. (2.7), the integral curve field in the plane (p, Byz) for a fast
magneto-sonic wave can be presented in the form shown in Figure 2. In this

figure, curve 1 is found through the equation

To the right of this curve, the fast magneto-sonic wave enters the region of

"hose! insgtability.

B

I

Figure 2.
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« (b) Slow magneto-sonic wave

-

As will be seen from Egs. (1.9) and (2.2), A < O in a slow magneto-sonic

wave. We therefore have'dByz/dp = 0 in the region where C ; 0. We have
A < O at the point where C = 0, and the derivative tends to infinityj; that is,
at this point there is no change in density with increase in the magnetic field.
We have dByz/do > 0 in a sldw magnetic wave in the region where C « 0. When
By2 - 0, we have dByz/dp = O when p < p*, and dBy?/dp < O vhen p* < P < p**,
where p** is found through the eqqation» o
* . * ]

/éM — 7P, * £, = Q.
We have dByz/dp -+ o« at the point p = p** when By2 - 0, and when p > p** we
have dByz/dp > 0. But when By2 >> BX2 (b + O0) we have dByz/dp < 0. From whence Alé
it follows that the integral curve passing through the point (p > p**, By2 = 0)

changes the sign of the derivative. At the same time, using Eq. (2.4), it is

10



easy to show that the sign of the derivative will change only once.

When P - O, we have C + B /éﬂ, A o —(l—b)p s and as a result,
dB /dp - '8”(1-b)C2B. Thus, when p - O, we have dB /dp < O. Thlszderivative
is 11m1ted, and more so in terms of the absolute magnltude than by B . The
integral curve field in the plane (p, Byz) has the shape shown in Figure 3 for
a slow magneto-sonic wave. In this figure, the dashed curve is found through

the equation

”

Jara 2o T

To the left of this curve p, < pm, and the slow magneto-sonic wave will become
imaginary. It is obvious that the postion of curve 1, and of the dashed line,
as shown in Figures 2 and 3, are significantly dependent on the constants C

and C, in Eq. (2.4).

1

Figure 3.

3. Some Additional Results

Curve 1 in Figures 2 and 3, and the dashed curve in Figure 3, are found

/D”u: /DM )r - '/0// ‘://Dm } Z_IS

s /

through the equations

which, with Eq. (2.4) taken into consideration, have the following forms,

respectively,

11
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As will be seen from Eq. (3.2), when By -+ 0, we have
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and, obviously, P° < p* (because p < 1/% pM). It is easy to show that for the

2 2
Eq. (3.2) curve we have dp/dBy >-0 and dp/dBy - O when By - o, and that the
2 .
Eq. (3.1) curve intersects the By = O axis at the point 0°° satisfying the

inequality
Poe > p**,

Moreover, differentiating Eq. (3.1) with respect to p, it can be shown that at
the point (p°°, By2 = 0) the magnetic field along the integral curve for a slow
magneto-sonic wave increases more rapidly than does the magnetic field along

the Eq. (3.1) curve (curve 1 in Figure 3 corresponds to the equation P, = pM).

In the limit case p, << B /4“ and p, << B /QH equations; ,and the entire /16
analysis for the fast magneto-sonic wave, coincide with reference [3] results.
Specifically, for the fast magneto-sonlc wave we have'

olﬁﬁ f/u C/)>O)

where )\ is found through Eq. (1.3); that is, wave flip occurs.

We have the following for the slow magneto-sonic wave in this case
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and this does not coincide with the equations and the analysis obtained in
reference [3]. Specifically, the anomaly case is missing in this limit case
and everywhere dA/dp > 0; that is, slow magneto-sonic wave flip occurs. In

the general case we have
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Differentiating the characteristic equation for fast and slow magneto~-

sonic waves, and after cumbersome transformations, we obtain
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If the Riemann wave is propagated almost perpendicular to the magnetic

field (b - 0), we have, for the fast wave
o A ‘3 S o
Jo 2 V M("Z/i ) Z

In this case for the slow magneto-sonic wave we have

2 _:,'Z/ | N o, 57
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After uncomplicated transformations, using Egs. (3.3) through: (3.7), we obtain
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that is, when a slow magneto—sonic wave .18 propagated almost perpendicular to 118
the magnetic field in the region in which this wave (p“ = pm) exists, it has

a tendency to fiip.
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Designations Used

plasma velocity

density

longitudinal.and transverse pressures

magneticbinduction vector

unit vector along the maénetic induction vector

wave phase velocity

velocity of fast and slow magneto~gonic waves,.respectively

Alfén wave velocity
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